
Information and Software Technology 39 (1997) 185-193

INFORMATION
AND

SOFTWARE
TECHNOUW

Rule handling in the day-to-day resource management problem:
an object-oriented approach

K.X. Thrampoulidis”, C. Goumopoulos, E. Housos

Department of Electrical & Computer Engineering, Computer Laboratory, University of Patras, GR-265 00 Rio Patras, Greece

Received 8 October 1995; revised 21 June 1996

Abstract

The day-to-day resource management problem is caused by a set of unexpected events which disturb the planned daily activities and thus
change the long-term optimal schedule. The solution to this problem presupposes that all the regulations for the handling of resources in the
particular application domain have been satisfied. In this paper, a new approach to handling the rules in the resource management problem is
presented. An object-oriented application specific language that allows the flexible expression of the rules, as well as the corresponding rule
handling subsystem are presented. The design of the whole system is based on a generic meta-model derived from the object-oriented
paradigm. This makes the system applicable to a wide range of problem domains such as repairs management, airline and other transportation
scheduling, school scheduling, etc. The system has been developed and tested as a subsystem of the DAYSY system, a day-to-day resource
management system for the airline domain.

Keywords: Rule handling; Legality checking; Object-oriented application specific language

1. Introduction

The confrontation of problems which occur in the daily
application of a resource schedule is a difficult and tedious
process. Due mainly to unexpected events, like resource
weakness to support it, the realization of the planned time-
table is impossible. This leads to the necessity to change in
real-time the planned schedules of the resources. The calcu-
lation of the optimal changes in such cases involves the
solving of difficult combinatorial problems [l-3] without
violating the set of enterprise regulations the solution must
conform to. In the context of the DAYSY/ESPRIT (Day-to-
Day Resource Management Systems) project, we faced the
problem of day-to-day resource management in the airline
problem domain, with Lufthansa German Airlines as the
pilot user. However, the development of a generic system,
capable of being applied to a wide range of problem
domains, was one of our main targets.

The daily rescheduling problem in most airlines is still a
manual process without the use of a computer system to
optimize the solution with respect to both quality and
cost. However, the consolidation of airline companies and
their consequent increase in size has made it mandatory for
such a computer system to be used in the daily rescheduling

* Corresponding author. e-mail: {thrambo,goumop,Housos}@ee.upatras. gr

0950-5849/97/$17.00 0 1997 Elsevier Science B.V. All rights reserved

PII 0950-5849(95)0000-0

of their resources. Such a system is a valuable tool for the
persons (planners in the airline domain), who are respon-
sible for the realization of the timetable. Special purpose
techniques, different from those used in long-term planning
must be used, as the time available for the computation
process is very limited.

One of the main required functions of a day-to-day
resource management system is the testing of the legality
of the produced solution in compliance with the complete
set of the enterprise regulations. All airlines must conform
to a set of International Government Regulations (IGR’s),
which are intended to minimize crew fatigue and ensure
passenger safety. In addition to the IGR’s, most major air-
lines must also conform to a complex set of regulations
imposed by employee unions. These regulations, called
rules for simplicity, vary according to crew type (pilot or
flight attendant), crew size, aircraft type, time zone distance
from base, etc. They include, among others, work rules
concerning maximum duty periods, maximum flying time
and maximum number of flights permitted during regular
and irregular operations. All these regulations are continu-
ously changing, so there is a need for a user-friendly system
to express and manage them.

Most of the existing scheduling and rescheduling systems
test the legality of the produced solution using a few
external parameters and embedding the rules within the

186 K.X. Thrampoulidis et al.llnformarion and Software Technology 39 (1997) 185-193

application software. Other systems, such as Volvo Data
CARMEN [4] (Lufthansa, Alitalia, SAS, KLM) and SBS
RuleTalk [5] (United, British Airways, Delta) are using a
special purpose language for the expression and subsequent
management of rules. In this case, using a language as an
interface, the user is able to change not only the data but also
the structure of the rules. In this way it is possible to inves-
tigate future scenarios and Nk extensions without changing
the application programs. Finally, a third category includes
systems such as CESAR of Air France and that of Cathay
Pacific Airways [6] which are using artificial intelligence

techniques to analyse, interpret and finally represent, by the
use of rules, both the expert’s knowledge of the scheduling
process as well as the enterprise regulations. All the above
systems do not deal with the representation of the rules in
the general case as imposed by different application
domains. They also require skilled programmers so as to
be used effectively.

In this paper, we focus on the subsystem responsible for
the legality of the produced solution according to the set of
enterprise regulations. These regulations were classified for
the purpose of the present work into three main categories:
activity composition rules, proper9 calculation rules and
property constraint rules. This categorization proved to be
very useful in the confrontation of this kind of problem. To
manage the rules of the above categories, a rule language
was defined and the underlying subsystem, which checks the
legality of the rules, was developed. The system contains
reusable components in such a way that although its primary
application is in airlines, it can easily be adopted in other
problem domains. An extension [7,8] of the OMT method-
ology [9,10] was used for the design and development of the
system. Use cases and object interaction diagrams are the
main enhancements of this OMT extension.

In the next section, the day-to-day resource rescheduling
problem in the airline problem domain is presented. The
third section briefly presents the architecture of the
DAYSY system. The fourth section introduces the Legality
Checking Subsystem; discusses the design characteristics of
the system, its ability to be used in different problem
domains and the object-oriented meta-model on which the
design of the whole system was based. The fifth section
illustrates, by use of an example, our high level object-
oriented rule handling DAYSY language. Finally, the last
section concludes the work.

2. Problem description

Planning airline operations is a highly complex process
that uses costly resources - aircraft and staff - under
difficult technical and legal constraints, to produce an airline
schedule. The smooth execution of this schedule is usually
disrupted by unexpected events of several types. Additional
flights, flight cancellations (bad weather, low booking),
changes in aircraft type, changes in the time limits of flight

duties, personal disruptions (sickness, qualifications not
renewed), etc. can occur at any time. They create the need
for a fast and effective rescheduling of resources in order to
have optimal service for the flying public, without violating
the contractual and safety rules of the crews. The task of
repairing the schedules in real-time, known as day-to-day
resource management, includes the following:

l recognition of the event;
l identification of all the affected components of the

schedule;
l generation of one or a set of solutions;
l selection of the best solution, that can be realized.

In the field of crew scheduling, a rotation is a round trip
during which a number of legs/flights are covered. The idea
is to start from a station with a set of crews, cover a number
of flight legs during a few days and finish the trip at the same
station. This station is called home base for the specific
crew. Fig. 1 gives graphically a portion of a schedule of
an airline. The flights shown are: ATH-SKG, SKG-PAR,
PAR-ROM, ROM-ATH, SKG-CFU and CFU-ATH. Each
flight is supported by a specific crew composition (crew
complement). So, the flight ATH-SKG requires a crew
composition of lCP/lF0/3FA, i.e. 1 captain, 1 flight officer
and 3 flight attendants. The planned rotations ROTl, ROT2
and ROT3 with their crew complements are given with solid
lines. For example, ROT1 with crew complement lCP/lFO/
3FA consists of the following legs: ATH-SKG, SKG-PAR,
PAR-ROM, and ROM-ATH. Notice that the crew require-
ments of a flight can be satisfied with a combination of two

or more rotations.
The schedule is performed normally unless an unex-

pected event appears. Such an event is the following: The
FA ‘Petrou’ gets sick during the flight ATH-SKG. The plan-
ner informs the system about this event and he/she issues the
actions that will ensure the normal operation of the airline
schedule. A possible solution for the above problem
includes the following actions:

(a) Modify the crew complement lCP/lF0/3FA or ROT1
to lCP/lF0/2FA. This is due to Petrou’s absence.

(b) Modify the crew complement lCP/3FA of ROT2 to
lCP/2FA. The FA ‘X’ is taken from ROT2 to cover
Petrou’s absence. It is assumed that the flight that brings
‘X’ arrives at SKG airport at about the same time as
the flight that brings Petrou. A choice is made to satisfy
the needs of an international flight with priority over the
corresponding domestic flight.

(c) Create a new rotation, ROT4 with crew complement
1FA. This rotation is assigned to the dispatched FA ‘X’.

(d) Create a new rotation, ROT5 with crew complement
1FA. This rotation is assigned to Petrou.

(e) Update the monthly schedule of FA Petrou.
(f) Update the monthly schedule of the FA ‘X’.

This solution is valid only if there are no rule violations for
the monthly schedules and the rotations that are affected.

daisy
Rectangle

K.X. Thrampoulidis et aLlInformation and Sofhoare Technology 39 (1997) 185-193 187

ATH: Athens, SKG: Thessaloniki, CFU: Corfu, PAR: Paris, ROM: Rome

II) :flight segment
Rotation 1: ATH - SKG - PAR - ROM - ATH
Rotation 2: - SKG - CFU - ATH
Rotation 3: - PAR - ROM - ATH
Rotation 4: ___ - SKG - PAR - ROM - ATH
Rotation 5: ATH - SKG -

- : planned rotation
.) : new rotation

Fig. 1. A portion of the daily schedule of an airline.

Day-to-day resource management is not limited to air-
lines. It is also applicable to other companies involved in
air transportation: catering companies, airports, fuel pro-
viders. Transportation networks have very similar prob-
lems, and competition is forcing them to react in real-time
to market demands. Many other areas, such as the daily
scheduling of technical crews for radio and television, live
haul transportation in the food industry, etc. need efficient
resource management.

3. The DAYSY system

In the context of the DAYSYBPRIT project we faced
the problem of day-to-day resource management, in the

airline problem domain with Lufthansa German Airlines as
the pilot user. The DAYSY system, that was developed, is a
toolbox of reusable software components that makes it
possible to develop and deploy day-to-day resource
management systems at a fraction of current cost. In Fig.
2 the basic architecture of the DAYSY system is given.

According to DAYSY, for the production of a solution,
the Daysy-Planner uses the constraint logic programming
based Automatic Rescheduling [11,12] module (AR), the
Legality Checking subsystem (LC) and a set of additional
tools (planning tools), all of which have access to the
company’s Oracle database. The Daysy-Planner, having
the responsibility for reprogramming, guides the entire solu-
tion process by choosing the strategy and defining a set of
priorities. The LC module checks the legality of the crew

Fig. 2. DAYSY system architecture.

daisy
Rectangle

188 K.X. Thrampoulidis et al.lInformation and Software Technology 39 (1997) 185-193

assignments, as well as new or modified trips according to
the set of rules.

The Rule Manager, using the off-line rule manager
subsystem, creates new rules and updates the existing
ones using a high-level special purpose language. This
high-level rule description is then translated into a low-
level one, which was designed to achieve the best com-
putational performance for the legality checking mechan-
ism, using state of the art practices, e.g. object-oriented
approach, constraint programming etc.

The basic concepts involved in the rescheduling process
are the concepts of activity and available resources. An
activity requires a specific set of resources in order to be
in the ready state and thus able to be executed. Fig. 3 shows
part of the object model of the DAYSY system, containing
the basic objects of the airline crew-rescheduling problem.
The basic activities in the airline area are: leg, duty, trip,
rest, education, training, vacation, etc. A crew member can
be associated with many activities with link attributes
position and requested-by. He/she probably has constraints
to specific airports and is qualified for a specific airplane
with link attributes position, start-date and end-date.

A subset of the rules captured in the object model of Fig.
3 do not change in time and are embedded in the enterprise
Database Management System, mainly in the form of stored
procedures and triggers. Instead, rules concerning activity
composition, property calculation and property constraint,
change over time and must be decoupled from the initial
application build stage. These rules include among others

rest rules, duty and transit rules, departure/landing rules and
cost rules [13]. They are provided to the application subse-
quently via a high-level special purpose language in a way
that greatly increases the company’s reaction to changes in
enterprise regulations.

The LC subsystem is based on the above-mentioned
object model. Consequently, in the low-level rule descrip-
tion of Fig. 2 one can find rules concerning constraints on
properties of the crew member class of Fig. 3. Also, through
the on-line rule manager module the DAYSY-Planner is
able to on-line change attributes of briefing and debriefing
classes presented in the object model of Fig. 3.

4. Legality Checking Subsystem

Every solution produced either manually or automatically
must satisfy a set of rules. These rules can be roughly
divided into static and dynamic. Static rules refer to time
and space conservation, and are implemented within the
Automatic Rescheduler [14] subsystem implemented with
CHIP (Constraint Handling In Prolog). For example,
according to static rules, no crew can arrive at one place
and depart from another or arrive after the departure of
the next flight. Dynamic rules change over time and are
encapsulated within the Legality Checking Subsystem.
The principal reason for encapsulating the rules within the
LC subsystem was to protect against extensive modifica-
tions of the complete system whenever a change in the

(ordered)
I

rquuted_by

Cm
member

I
Briefing

position tl start_date
cnd_drte

1 restrictions

has home base

Aircraft

type

Fig. 3. Part of the DAYSY system Object model.

daisy
Rectangle

K.X. Thrampoulidis et aLlInformation and Software Technology 39 (1997) 185-193 189

rules happens. The LC subsystem must handle any rule
governing the scheduling process without the involvement

of the other components of the DAYSY system. Contract
changes must be incorporated into the scheduling process by
the daysy users without risking system integrity. The LC
subsystem must also be flexible and user friendly, as it is
used by airline planners without special skills in computer
languages. These requirements were satisfied through the
creation of an object-oriented language for the definition
of the rules, the allowance for the on-line management of
these rules and the development of a fast and efficient
legality-checking mechanism.

The Rule-Manager, using the off-line rule management

subsystem, describes the rules and creates rulesets. A ruleset
is composed of a set of logically cohesive rules for a
particular application and exists both at a high-level repre-
sentation (DAYSY language) and a low-level one, that is
used by the LC subsystem (Fig. 2). The translation from
high level into low level is done by the rule translator,
designed and implemented using the Lex & Yacc Unix
tools [15,16]. The rule translator implements the front
end of the DAYSY language and produces an intermediate
C++ code from the original DAYSY language source. Then,
the back end of the compilation process is assigned to the
corresponding C++ compiler of the target machine. This
scheme enables portability of the rule translator over differ-
ent platforms. The low-level representation was defined in
terms of C++, through the facilities that come with it (e.g.
class libraries for manipulating complex data structures), in
such a way as to achieve the required performance and to
support late binding in the ruleset construction process.

The on-line rule manager allows for the on-line manage-
ment of a significant part of the knowledge represented by
the rules. This gives the DAYSY planner the ability to test
several different scenarios and find the most favourable
solution to each specific planning problem.

In an effort to improve the flexibility of the DAYSY
system and allow it to cover other scheduling areas as
well (e.g. hospital staff scheduling, school-timetabling,
other transportation scheduling, etc.), the meta-model of
Fig. 4 was created, which has the concepts of activity and
rule as its basic building elements. “Primitive activities in
the scheduling process are the set of basic non-overlapping
and indivisible activities which are typically performed in
order to produce the deliverables” 1171. Primitive activities
are characterized by primitive properties such as: start time,
end time, activity type. They provide the basis for the
construction of other, non-primitive activities, that we call
composite activities. A composite activity, from an external
viewpoint, is conceptually composed of other activities.
These ‘other activities’ are referred to as component activ-
ities. For example, the trip in the airlines problem domain, is
a composite activity that consists of shifts, rests and optional
training and simulation. Every shift in its turn is a composite
activity composed of flight activities (legs). For each com-
posite activity there is an activity composition rule. Activity

Fig. 4. Object model of LC subsystem.

composition rules are used in the recognition phase of the
various composite activities.

Each activity may be characterized by a set of complex

(computed) properties. For each complex property there
must be a property calculation rule to evaluate it. Each
property calculation rule is expressed by use of the basic
constructs of the DAYSY language, e.g. operators, data
types, functions and statements. Finally,properzy constraint
rules are the heart of the ruleset and specify restrictions or
requirements concerning instances of a property type.

The creation of the object model for the specific appli-
cation and recording of the activities and rules is based on
problem domain knowledge and application domain knowl-
edge (Fig. 5). In every different application domain, the
user defines the primitive and composite activities either
from scratch or as extension of the primitive ones. The
EXPANDS operator of the DAYSY language, allows the
activities of the application to inherit similar characteristics

Problem
domain

$3pfx3tion

E%ZeTlge
Knowledge

/
Problem- ’ M
dovajn
yt;;;es & ;;t,ih$ es &

\J
Applications

Object Model

Fig. 5. Generation process of the application’s object model.

daisy
Rectangle

190 K.X. Thrampoulidis et aLlInformation and Sofbvare Technology 39 (1997) 185-l 93

from the basic predefined activities of the problem domain.
It also simplifies the integration of the LC to existing
scheduling systems, and provides a uniform access to the
characteristics of the activities. For the Lufthansa case,
adaptation was made to existing activities in an Oracle
server. Meanwhile new activities like rest, transit and
days-off were created.

The simpler search method for a trip-building system,
like the AR of the DAYSY system, is the generate and
test approach, according to which a complete solution is
generated and then its legality is tested. However, the
most efficient search is realized by the test and generate
approach. In order for the LC subsystem to support this
approach, incremental checks are performed during the

//DECLARATION SECTION

INCLUDE file-name

INCLUDE file-name

CONST

const-name = scalar-value,

const-name = scalar-value;

VAR
variable-name : type,

variable-name : type;

ACTIVITY activity-name [EXPANDS activity-name]

PROPERTIES:

property-name : type [TEMP],

property-name : type [TEMP];
COMPONENTS:

activity-name,

activity-name;

RELATED KEYWORDS

keyword-name,

keyword-name;

RULES:

rule-name,

rule-name;

END

TIMEWINDOW timewindow-name EXPANDS CalWin

PROPERTIES:

property-name : type,

property-name : type;

RULES:
rule-name;

trip-building process. A caching mechanism is used in
such a way that the later incremental expansion of the partial
solution does not need to fire the calculations from scratch,
but rather pre-computed results can be used.

To support chronological backtracking [18], the most
widely known search method, the LC subsystem resets
its activity aggregation hierarchy in memory and checks
the constraints only on the affected activities. In addition,
a number of useful values denoting properties of the activ-
ities are available for the searching procedure (AR). This
kind of information is used by the Automatic Rescheduler
implementing the search method to reach the final solution
quickly while removing the search tree branches that turn
out to be invalid.

//INITIALIZATION SECTION

INITIALIZE

[(activity-name timewindow-name)::]variable-name =

scalar value;

[(activity-name timewindow-name)::]variable-name =

scalar-value;

END

//DEFINITION SECTION

PROPERTY property-name OF (activity-name timewindow-

name)

VAR: /* list of variables used for the property calculation

variable-name,

variable-name;

CONST:
const-name = scalar-value,

const-name = scalar-value,

const-name = scalar-value;

RULE:

expression;

END
expression;

RULE rule-name OF (activity-name timewindow-name)

[STATUS: ON/OFF]

[GROUP: group-name]
[PRIORITY: priority-number]

[CONDITION: boolean-expression]

[CONST:
const-name = scalar-value,
const-name = scalar-value,

END const-name = scalar-value;]

BODY:
expression;

END

Fig. 6. DAYSY language file outline

daisy
Rectangle

5. The DAYSY language

The DAYSY language is an object-oriented special
purpose language for the expression and handling of rules
inherent in scheduling problems. It was designed and imple-
mented during the execution of the DAYSY/ESPRIT
project [19,20]. In this section, the basic elements of the
language are presented using simple examples. A DAYSY
program is organized as is shown in Fig. 6. It is composed of
three major distinct sections: the declaration section, the
initialization section, and the definition section.

(1) Declaration section. The declaration section of a
DAYSY program consists of four different types of
declarations:
(a) The CONST Declaration: The CONST declaration

assigns a symbolic name to a scalar constant. These
names act like constants in the sense that they do not
appear on the left-hand-side of any assignment state-
ment of the language, but they can be altered from
the external environment. It is possible to attach new
values through the on-line rule manager nodule
while the legality system is running, without having
to recompile the DAYSY source. This facilitates the
running of different scenarios from which we can
find the most favourable solution to each specific
planning problem. For example, the following
declaration declares the briefing and debriefing
constants:

//DECLARATION SECTION

ACTIVITY shift EXPANDS basic-shift

PROPERTIES
tz_diff: trek /* “Work start for a shift” */

TEMP

max_transit_time : trel,

duty-start : tabs,

duty-end : tabs,
duty-period : trek

COMPONENTS:
leg, simulation, training;

RELATED KEYWORDS:
is-first-shift, is-last-shift, flight-carrier;

RULES:

shifi_in_a_low, /* stimulus rule */

duty_before_and_after_break,/*constraintrule*/
timezone-diff, /* constraint rule */

maximum-flight-duty; /* constraint rule */

END

//DEFINITION SECTION

PROPERTY duty-start OF shift

RULE:

departure of first leg-briefing;

END

K.X. Thrampoulidis et al.llnformation and Software Technology 39 (1997) 185-193 191

CONST
briefing = 00:30,
debriefing = 00:45;

(b) The VAR Declaration: Every variable that is used
by the program but does not belong to a specific
activity or time window must be declared within a
VAR section. For example, the following VAR
declaration declares two variables of type Boolean.

VAR
activity-detected: BOOLEAN,
penalty-defined: BOOLEAN;

(c) The ACTZVIW Declaration: The ACTIVITY key-
word declares an activity type that is associated
directly or indirectly with rules. For each activity,
its properties and components types, in the case of a
composite activity, are defined. Also, the rules and
the related keywords for each activity are declared.
A rule is associated with an activity if one of the
following holds:
l the rule defines the computation of a property of

the activity (for an inference or compututionul
rule);

l the rule defines a constraint on the value of a
property of the activity (for a constraint rule);

l the rule supports the process of recognizing an
activity (for a stimuluslresponse rule);

For each activity property there is a regulation
for the calculation of its value. Its expression is

PROPERTY duty-end OF shift

RULE:

arrival of last leg + debriefing;

END

PROPERTY duty-period OF shift

RULE:

duty-end - duty-start;
END

RULE maximum_flight_duty OF shift

STATUS: ON

GROUP: MTV

PRIORITY: 1

CONDITION: seasongeriod == SUMMER;

CONST:

max_duty_period = 14:OO;

BODY:

duty-period c= max_duty_period;
END

l/where

//trel : declares a relative time constant that is used to
//represent an elapsed amount of time between two activities

//or a time of a day, in hours and minutes and

//tabs : declares an absolute time constant that is used to

//represent the time and date of some event.

Fig. 7. Activity declaration and property definition examples.

daisy
Rectangle

192 K.X. Thrampoulidis et al.linformalion and Software Technology 39 (1997) 185-193

given in the definition section. As an example of
activity declaration, the activity shift is declared in
Fig. 7.

(d) The TIMEWINDOW Declaration: The TIME-

WINDOW keyword is used to declare every time
window that is used by at least one rule. There are
two types of time windows: the Fixed Time Window

and the Flying Time Window. The DAYSY language
has several built-in time windows, e.g. CalYear,
CalMonth, CalDay, etc. This is a totally different
and more user-friendly approach for the expression
of rules that refer to calendar intervals in comparison
with existing systems. For example, the language
proposed by the CARMEN [4] system, evaluates
properties and constraints within the activity aggre-
gation hierarchy and not within a specific time inter-
val. Thus the property flight-time in 28 consecutive
days is considered to be an attribute of the rotation
activity. A better approach is to consider it as an
attribute of a 28ConsDays TimeWindow object
(see example below), since it constitutes a natural
property of such a window. In our system, the time
window declaration encapsulates complex proper-
ties and their associated property calculation and
property constraint rules.

respectively. Its duration is set to 28 calendar days. In the
definition of FlightTime the aggregation operator SUM is
used to evaluate FlightTime as the summation of Block-
Times over all leg activities during the 28 days time
frame, where BlockTime is a property defined for the leg
activity. The definition of MaxFlightTimeRule states that
the rule is active and its limitation (MaxFlightTime) may
be changed dynamically in run-time through its local
CONST declaration. The rule returns a true or false value
depending on the evaluation of the Boolean expression
given at the BODY of the rule definition. The legality
checking mechanism is responsible for checking the above
rule in a per calendar day step, for the current activity chain
that is checked.

(2)

(3)

Initialization section. All variables are assigned initial
or default values in the initialization section INITIAL-
IZE before the start of the execution of the rules.
Definition section. The definition section contains the
definition of the properties and rules that were declared
in the declaration section. In Fig. 7, the definition of
some of the properties and rules for the shift activity
are given.

TimeWindow Example
The following is an example of the implementation of a

rule from European Flight Regulations [21]. The rule states:
“No operator shall schedule a crew member for flight duty
and no crew member shall accept an assignment for a flight
duty if his/her block time of the flights in which he/she was
an operating crew member is more than 100 hours in any 28

consecutive days.”

TIMEWINDOW 28ConsDays EXPANDS CalDay
INITIALIZE:

twduration = 28;
PROPERTIES:

FlightTime;
RULES:

MaxFlightTimeRule;
END

For the expression of the property calculation rules, a
set of operators [20] was defined, e.g.:
l expression OF FIRST activity-name

This expression is an example of the specifier
operator. Specifiers are used for referencing a specific
activity in the aggregation hierarchy and either obtain-
ing one of its properties or evaluating an expression.
Specifier FIRST references the first component object
of the activity-name type and calculates the expression
on it. There are three other specifier operators with
similar semantics: LAST, NEXT and PREV.

l SUM expression OVER activity-name
This expression is an example of the aggregation
operator. Aggregations are used for referencing all
the component activities and evaluating an expres-
sion on each one that contributes to the net result.
Examples of aggregations are SUM, AVG, MAX,
MIN, COUNT, etc.

PROPERTY FlightTime OF 28ConsDays
RULE: 6. Conclusions

SUM BlockTime OVER LEG;
END

RULE MaxFlightTimeRule OF 28ConsDays
STATUS: ON
PRIORITY: 2
CONST:

MaxFlightTime = 100:OO;
BODY:

FlightTime < MaxFlightTime;
END

The object-oriented approach is a powerful methodology
for the analysis and design of complex systems. An exten-
sion of the OMT methodology was used in the development
of the legality checking subsystem of a day-to-day resource
management system. A high-level programming language
was defined for the expression and management of the rules.
The language and the legality checking system were used in
the expression and integration of both EEC and Lufthansa
rules.

The time window 28ConsDays is declared to inherit The main advantage of the DAYSY LC system compared
the built in CalDay timewindow, with FlightTime and Max- with existing systems is its independence from a particular
FlightTimeRule as new property and constraint names application and its potential to be used in a wide range of

daisy
Rectangle

K.X. Thrampoulidis et aLlInformation and Software Technology 39 (1997) 185-193 193

scheduling problems. The user defines the activity types and
the activity aggregation tree suitable to the specific applica-
tion and is able to run what-if scenarios by changing on-line

a significant part of the knowledge represented by the
rules. In general, the user has the ability to express the
rules having all the benefits of the object-oriented approach.
Specific information can be defined as exported from the
system and this becomes immediately usable from other
subsystems, for example, the Automatic Rescheduler in its
effort to reduce its search space. In addition, the two systems
co-operate for the backtracking needs of the Automatic
Rescheduler, in order to reduce the computational effort
and improve the performance.

From the user point of view, comments recorded in
favour of the DAYSY LC system compared with other
ones, are the following: user friendliness, improved flexibil-
ity in the expression of the regulations, guaranteed overall
system integrity by encapsulating the management of the
rules in the LC system, flexibility in the creation of
what-if scenarios, and the improved productivity of the
Rule Manager.

References
[16] S.C. Johnson, Yacc - yet another compiler compiler. Computing

Science Technical Report 32, AT & T Bell Laboratories, Murray

Hill, NJ, 1975.
[l] R. Anbil, E. Gelman, B. Patty and R. Tanga, Recent advances in crew-

pairing optimization at American Airlines, INTERFACES, 21 (1991)

62-74.

[2] S. Lavoie, M. Minoux and E. Odier, A new approach for crew

pairing problems by column generation with an application to air

transportation, European Journal of Operational Research, 35 (1988)

45-58.

[17] Andrew T. Hutt, Object Analysis and Design: Comparison of
Methods, Object Management Group, John Wiley, 1994.

[18] P. Van Hentenryck, Constraint Satisfaction in Logic Programming,

MIT Press, 1989.

[3] E. Housos and T. Elmorth, Automatic subproblem optimization for

airline crew scheduling, INTERFACES (accepted for publication).

[4] CARMEN GPC - User’s Reference Manual, Volvo Data AB,

Gothenburg Sweden (December 1993).

[19] N. Diamantopoulos, E. Housos, C. Goumopoulos and K.

Thrampoulidis, Rule Translator & Language. ESPRIT PROJECT

EP8402 -DAYSY Technical Report, Patras, Greece, March 1995.

[20] C. Goumopoulos, K. Thrampoulidis, N. Diamantopoulos and E.

Houses, Syntactic and semantic definition of DAYSY rule language,

ESPRIT PROJECT EP8402, DAYSY Technical Report D4.2, Patras,

Greece, March 1995.
[5] C. Boegner, New advances in crew planning, management and opera- [21] Flight and Duty Time Limitations and Rest Requirements, Der

tions, Airline Information Systems, ATITS 94 Paris France (April 94). umstrittene JAR-Draft Nr. 19.

[6] L. Kwok, S. Hung and C.J. Pun, Knowledge-based cabin crew pattern

generator, Knowledge-Based Systems, 8 (February 1995).

[7] K. Thrampoulidis, N. Agavanakis and V. Makios, General object-

oriented design methodology, Technical Report, Department of

Electrical Engineering, University of Patras, April 1991.

[S] K. Thrampoulidis and N. Agavanakis, Object interaction diagram, a

new technique in 00 analysis and design, Journal of Object-Oriented

Programming (JOOP) (June 1995).
[9] J. Rumbaugh et al. Object-Oriented Modeling and Design, Prentice-

Hall, 1991.

[lo] G. Booth, Object-Oriented Design with Applications, 2nd edn,

Benjamin, 1994.

[ll] M. Dincbas, P. Van Hentenryck, H. Simonis, A. Aggoun, T. Graf and

F. Berthier, The constraint logic programming language CHIP, in

Proc. Int. Conf: Fifth Generation Computer Systems, FGCS-88

Tokyo, Japan, December 1988.

[12] G. Baues, P. Kay and P. Charlier, Constraint based resource allocation

for airline crew management, Airline Information Systems, ATTIS 94

Paris, France, April 94.

[13] K. Thrampoulidis, E. Housos, C. Goumopoulos and G. Thomopoulos,

Analysis and Classification of Enterprise Regulations ESPRIT

PROJECT EP8402, DAYSY Technical Report D4.1, Patras, Greece,
November, 1994.

[14] G. Baues, Detailed design specification - automatic rescheduler

DAYSY Technical Report, Orsay, France, January 1995.

[15] M. Lesk, Lex - a lexical analyzer generator. Computing Science

Technical Report 39, AT & T Bell Laboratories, Murray Hill, NJ,

1975.

daisy
Rectangle

